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Abstract. Analytical expressions are given for the eigenvalues and eigenvectors of a Hamiltonian
with sy, (2) dynamical symmetry. The relevance of such an operator in quantum optics is discussed.
As an application, the ground-state energy in the Dicke model is studied throu@h serturbation
theory.

1. Introduction

Many models in quantum optics, such as Raman and Brillouin scattering, parametric conversion
and the interaction of two-level atoms with a single-mode radiation field (Dicke model), can
be described by interaction Hamiltonians of the form (see, e.g., [1-4])

0 A 0 0
A 0 A 0
H=1| .- ... ... . (1.1)
0 -+ Ay 0 Ay
0 -« 0 Agu O

The dimension? = (2/ + 1) of this matrix is by no means small (for instance, in the Dicke
model, 2 is the number of atoms considered). Therefore, finding analytical expressions for the
corresponding eigenvalues and eigenvectod &f essential in order to solve the dynamics of

the model. Itis also importantto point out that, in some caldesgn be seen as a perturbation of

the J, generator of an underlying:(2) dynamical symmetry. This fact has been successfully
used in order to describe many features of these models [3], and it will be also relevant in what
follows.

In this paper we show that the s@) quantum algebra (see, e.g., [5-13]) can be used to
define a Hamiltonian of the type (1.1) in a natural way. Such a Hamiltonian is introduced
as a simple function of the () generators having as non-deformed limit thegenerator
of thesu(2) algebra. By considering the well known representation theory g@2$§which
is revisited in section 2), the Hamiltonian is defined and its eigenvalues and eigenvectors are
found (section 3). The spectrum obtained is essentially anharmonic; thus we have a new
exactly solvable nonlinear quantum model with &) dynamical symmetry.

In section 4, relevant Clebsch—Gordan coefficients for both the bare and the dressed basis
are considered. Finally, in section 5 we present an application of the previous analytical results
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to finding the energy of the ground state of the Dicke model by making use of a perturbation
theory around the $2) Hamiltonian. This preliminary study shows that theleformed

J, operator here introduced is physically meaningful in the context of the quantum optical
Hamiltonians mentioned above (compare with the results given in [2—4], for example), and the
explicit dynamical features of the §i2) Dicke model will be fully developed in a forthcoming
paper. In this paper, we shall provide the basic algebraic properties that are needed in order
to solve it explicitly. It is interesting to stress that some of these properties show new (to our
knowledge) features of the s(2) algebra, all of them related to the deformgd= (J.+J_)/2
generator.

2. Thesu,(2) algebra

Let the operatord, , J1. generate the quantum algebrg &) with the coproduct [5-13]

AU =J:®q " +q" @ Js (2.1)

A(J)=J,®1+1Q J.. (2.2)
The deformed commutation rules consistent with the previous map are given in the form

[/, Ji] = £ Js, [+, J-]1=[27] (2.3)

where ] := (¢° — ¢ ) /(g — ¢~ andq = €/2. We shall assume thatis not a root of
unity, and we shall recover the ‘classical’ results wher- 1.
Let us introduce, firstly, the ‘bare’ basis of the eigenvectors, of

27,11, m) = 2ml|l, m). (2.4)

In this basis, th&2! + 1)-dimensional irreducible representation of &) is given by (2.4)
and

Jell,m) = VL Fmlll £m+ 1|1, m +1). (2.5)
Throughout the paper we will use the following (standard) notation fogthembers:
—n+ —n+ —n+ n— 9" —q"
[n] =g " +g " +g™ 4y 1=F’ [0]=0, [-n]=-[n]. (2.6)

We shall also introduce the symbols

[n,m] = q—(n—l)m +q—(n—3)m +q—(n—5)m +... +q(n—l)m — [nm]/[m] (27)
Thus, lim,_.1[n, k] = n, and
[n, 1] = [n], [k, 0] =k, [2,k] = ¢ +q* = [2k]/[K]. (2.8)

3. The Hamiltonian

Let us consider the following $(2) operator as a Hamiltonian:
H=q"?(Js+J_)q". (3.1)

We stress that the — 1 limit of H is just 2J,, but H is not the standard way to introduce
the deformed/, operator in sp(2). On the other hand, one can easily check that, from the
definition (3.1) and the maps (2.1)-(2.2), the coproductiofan be deduced (note thatis

an algebra homomorphism (X Y) = A(X) A(Y)):

AH)=H®1+¢*  QH. (3.2)
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Such a form of the coproduct is known (see, e.g., [13]). In (Bé+ 1)-dimensional
representatiod;, H thus takes the form (1.1) with

Ay = q" V2 [I+m][l —m+1]. (3.3)

In particular, wheri = 1, we have

0 q2J12] 0
Di(H) = | qY*J[2] 0 g V2V12] |- (3.4)
0 g 72J2] 0

A straightforward computation shows that the spectrum of this operator,i®[2}[2]. The
corresponding normalized eigenvectors are

q"? g Y2VI2]
1 1
1141 = —— | =VI[2] 11,0) = — 0 . (35)
22 g 2 —q"*V[2]

Due to the richness of the structures underlying quantum deformations, this remarkable
anharmonic deformation of thé, Hamiltonian can be explicitly solved for arbitratyas
follows.

3.1. Spectrum and eigenvectors

It can be proved (by induction and using the coproduct to construct higher-dimensional
representations from the three-dimensional one considered before) that the spectrum of this
operator for a given is just [2n], withm = —[, ..., [.

Moreover, the eigenvectdt, /)’ corresponding to the highest eigenvalué|[ given by
the following components in the bare bagisn):

— f . ma-1/2) 21!
am =(l,m|l, 1) =q ‘,—[l+m]![l—m]!' (3.6)

Here, the prime means that a special normalization is accepted, temporarily, ayhere
q""=Y? = 1/a_, ;. The next eigenvectdt, [ — 1)’ with the eigenvalue [2-2] is given by

it = (Ll L = 1) = cn g~ 2" /201 (1 g %) .(37)

Finally, an arbitrary eigenvector with eigenvaluen[Zcan be deduced, namely

, I [21]"
= (i)’ = ot g2 [

l—n

xS ((_1)jq—j(l—m—2n>+j<j+1>/2

j=0

[20—m)!
12 —n— ]!
[[—m][l-m—1]--- [l—m—j+1]>
[21N[21—1]---[21—j+1]
where [Z)!! : =[2n] - [2n — 2] - - - [2].

(3.8)
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3.2. Normalization

These eigenvectors can be easily normalized in termgsrafmbers. For the ground and top
states we have

LIy =N h N2 = N2 LI 1Y =g~ 2 g @b21])
LD =N IL 1D where =N =L Z RI- e
(3.9
A simple calculation gives
21-1 21-1
j\/’fl = n(qk +q—k) =2[2] (612+q—2)..,( 21 1+q—21+1 l_[ [2,k]. (3.10)
k=0 k=0
The excited states can be normalized as fO||OWS'
1 I+n I+n
NE = "{Lnlln) = ——— g +q7* [2. &]. (3.11)
l, 2o iz TR an + q—2n k:lj[[+,1 ( [2 2 ] k_l:[+n

For instance
./\/'12/2’1/22./\[12/2,_1/222, N512N5_1=2[2], ./\/10—[2]2, cee . (312)
Note that all of the coefficientaffn go to 2 in the limitg — 1. Finally, if we denote the
entries of the normalized eigenvectors as

'Afnn = ailnn/'/\/l'l (313)
the following relations hold:

An(@) = DAL, /gy A (@) = CDTMAL (@), (3.14)
They generalize the known symmetry of the non-deforme@) case § = 1) by involving
the transformatiog — ¢ 1.

3.3. Orthogonality relations

For physical applications (like the calculation of mean values) is desirable to further develop
the previousg-arithmetics’. With this goal in mind, let us note that the quantitigg|? from

(3.6) play the role of the binomial coefficients. In particular, the moments of this deformed
binomial distribution, i.e. the mean values

2]
Yz =)l Yi (3.15)
can be calculated. With this definition, the equation (3.9) is then rewritten in the form
21-1
= []w@ +a7). (3.16)
s=0

Moreover, one has the following deformed formul@e < j, M < 2I) for the binomial
distribution:

21—j—1
@ a=q" ] @+a™ (3.17)
s=—]j
(KT =1] - [k=M+1] g0y = g~ 2MI-MARDI2 (727K, ), (3.18)
21-M—1—j
=[20[21-1] - [21 = M+1] g /EOTHAEDE T (g +g™). (329)
s==j

These formulae are equivalent to the fact that the dressed vectors form an orthonormal basis.
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4. Clebsch—Gordan coefficients for the dressed basis

We can decompose the tensor product of the dressed vectors (3.8), (3.13) into the irreducible
parts
j=l+l
Lm) @1 i)=Y Ch,ljim+i) (4.2)
j=i-1
Wheregljl’mi are the Clebsch—Gordan (CG) coefficients for the dressed basis. However, the

vector|l,m) ® |1,i) on the left-hand side and vectofg m +i)1> on the right-hand side
are eigenvectors aof . in the corresponding representations onlyifes 0. Thus, only the

coefficientsg{lymo are of interest. Fat = 1, they are given as

3+q73 1 1

LS

ClLlO = [4] Q11,10 == W C1110 =0 (4.2)
[4] 1 0 1

C2lo0=.] s Cl=0 CYloo=—.]= (4.3)

=11,00 [2][3] =11,00 ~=11,00 [3]

Qil—m = Qimo Qh—m = _Qil.lo C 11,-10 = =0. (4.4)

They thus differ from the coefficients in the bare basis [9] (though have the same limit).
By rewriting the definition

Ch po= 124, PIL P)1I1, 0)2 (4.5)

in terms of components of the dressed vectors, and afterwards replacing explicitly the
components ofL, 0),, we get the relation

71 2 ~J 1 2 ~J !
_11 p0 — Z A Cllk llAk 1p / Cll;k+1$—1 Ak+l,p)' (4.6)
k——l

Here,Afm =0if |m| > L and

C/

llm1 my -

= 12(j, m1 +moll, m)1|1, mo) 4.7)

are the CG coefficients in the bare basis. Another useful formula for the Clebsch—Gordan
coefficients in the dressed basis can be obtained as follows. Starting with the expansion of the
tensor product

L p)1l1.0)2 = Y " Cly. polis P12 (4.8)
J

we can rewrite the dressed vectors in the bare b@simlz = m,_} A,’n,,U, Y12, and the
vectors| j, m)1» in terms of the tensor product, using bare CG coefficients:

j.m)12 = Z Clrmmymy | M — m2)1|1, m2)o. (4.9)

mz—fl

We have
[+1

J J
mlp mgO - Z Cll pOAm1+m2,PCll; mymy* (410)
j=I-1
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Multiplying by C/klzz; my.mp» Making a summation under the conditian + m, = m, using the
orthogonality of the Clebsch—Gordan coefficients
. .
Z Clllz; m*mz,mzcljllz;m—mz,mz = 8/" (411)

mz
and, finally, replacing the explicit form of?, ;, we have the connection between the coefficients
in the bare and dressed basis:

cl A 1

l 1/2 j
15 potmp = ﬁ{_-/‘tmﬁ_’pq / C/

! —12
w1t Au_1,4 / Clhm-11)
—j<m<j —1<p<l (4.12)

For instance, using these formulaefioe= j, we can express the‘dressed’ coefficients in terms
of ‘bare’ ones.
Finding the components of the first three rows of the matjx

Y gy .
" N VI =n]l[1 ]!
112—(3Z—1)/2 1
I q [21]! [2n]
= 4.1
At Nin [l —n]l[l+n]! V2] (4.13)
VI ey N ) I ) el )
1=2n N [ —n]'[l+n] 202021 - 1]
and using equation (4.12), we arrive at the explicit expressions
o [l LHplI+1-pl2. 141+ pl2. 141~ p]
L0 [21[21 + 2][2! + 1]
c! __2n (4.14)

S0 T e 212

ci- (U plll = pli2. 1+ pli2.1 — p]
et [2][20][21 + 1] ‘

5. Application to the Dicke model

In order to demonstrate how our approach works we will apply it to the Dicke model, which
describes the interaction of a systenof= 2/ two-level atoms with the quantum radiation field

in an ideal cavity. (This model is mathematically equivalent to the three-photon Hamiltonian
describing three-wave mixing.) The Hamiltonian can be written in the matrix form (1.1) with

the matrix elements

B, = I +m)(I+1—m)(s+1—m) (5.1)

wheres > [ is a parameter is the excitation number which is conserved in this model [3]).
We restrict ourselves to the case of the highest nonlineatrity, [. (In the language of
three-wave mixing processes this corresponds to the second harmonic generation.) We are
particularly interested in the limit of largewhich corresponds to high photon numbers.

We will take the Hamiltonian

Ho=QH (5.2)
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with H (3.1) belonging tou,(2) as a zeroth-order Hamiltonian, and we will find the Dicke
spectrum by using the perturbation theory. In the present paper we restrict ourselves to the
energy of the ground state for the sake of simplicity. The valugsasfd$2 are to be chosen.

The simplest way to fit them is to provide the coincidence of the points where the matrix
elementsB,, of the three-wave Hamiltonian and the matrix elements

Ap=Q¢" V2l =ml[l +m+1] = Q{, m + 1 H|l, m) (5.3)
of the HamiltonianH, take their maximum values. It gives (for= 1)
3 5-1
o = Nlogg = > log fz ~ —0.7218 (5.4)
and the maxima oB(m) and A(m) occur in the pointng = —( — 1)/3. We chose the
coefficient2 to make equal the values df, and B, in their maxima. This gives
4(N + 1)%2
_ A+ D7 (5.5)
A 27[N +1]
At the next step, we find the approximation for the three-wave Hamiltonian in the form
By~ QA ¢(m)  ¢(m) =1+¢1A — oA +§°A° A =m —m. (5.6)

We thus restrict the expansion up to the third-order polynomi@k). We can find the
coefficientsp; explicitly by comparing the Taylor expansions for the matrix elemeis)
andA(m) around the pointzg. We have

2N +1)¥? 27/ A \° 27/ A \° i
and
N+ 202 AN 4B AN _4}
A(m) = — [1 P, <N+1> o <N+1) +O(N™ (5.8)

which determines the polynomial(A):

27 202 A N2 (27 4eP AN 4
ow=1-(T- i) (551) * (5 ) (533) rov 69

Now we may substitut& = m — mg = J; + (I — 1)/3 and rewrite (5.6) in matrix form:
Hp ~ Q1+ (Jo = mo) + ¢ (J. —mo)J-] = 2Q{J,, f(J)}. (5.10)

HereJ, . are generators ofu,(2) and{A, B} = AB + BA. The new functionf (J;) is also
a polynomial of degree three, whose coefficients can be easily found. Now the ground-state
energy is approximately given as

3
(=L UHp|=1,1) ~ —Q[21] Y fil=L 1(J)|=L1D). (5.11)
k=0

Therefore, we have reduced the problem to the calculation of the averages of the powers of the
operators/, (the moments) in the eigenstates of the operator

Though this problem can be solved for arbitrary eigenstates, here we consider the ground
states only. By using the results of the previous sections we can write the generating function
for these moments. For arbitrapy= expu andg = expr we find

N-1

(=LUp™ =L =]

k=0

coshu + kt)

coshkr) (5.12)
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Now, let us introduce the notation

N-1 N-1
1
S =y tantf jir ~ f dx tanH xr + E[tanH‘t+tanH<(N — 1] (5.13)
j=1 !

where we have used the Euler—-Maclaurin summation formula. Differentiating (5.12) with
respect tqu, we find

(=1, 1120.]—1,1) = S, (5.14)
(=L UQRI)?* =1, 1) = S? — S+ N, (5.15)
(=1, 11(20,)3| =1, 1) = S3 — 35,81 + (3N — 2)S; + 2S3. (5.16)
On the other hand, from (5.13) we have the following expressions for the first three sums:
N tanha — ¢
S1 ~ — logcosho —¢) + L t = X logg (5.17)
o 2 N
t —1) tantf(a —1
S N -1y 2O — 0 @ — 1) (5.18)
o 2
N tantf(@ — 1) tant (e —1¢
S3~ — logcosie —t) — N (@1 + (@ ). (5.19)
o 20 2

The combination of all these formulae gives the approximation for the energy of the
ground state. Comparing with the numerical results, we can say that the accuracy for the
energy of the ground state is 1.5% for 100 atoms=£ 100) and 0.35% for 400 atoms. Note
that it is the Maclaurin summation formula (5.13) that reduces the accuracy, which would
otherwise be much higher. However, it gives the correct asymptotic behaviourNvhero,
which is sufficient for our goals. We may also mention that our method produces much better
accuracy than the analogous perturbation theory with comm@) as a dynamical symmetry
algebra [3, 14] orthe variational method with the(2) coherent states as probe states [15].
The complete description of the spectrum and the dynamical analysis of the Dicke model by
means of the present approach will be given elsewhere.
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