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Abstract. Analytical expressions are given for the eigenvalues and eigenvectors of a Hamiltonian
with suq (2) dynamical symmetry. The relevance of such an operator in quantum optics is discussed.
As an application, the ground-state energy in the Dicke model is studied through suq (2)perturbation
theory.

1. Introduction

Many models in quantum optics, such as Raman and Brillouin scattering, parametric conversion
and the interaction of two-level atoms with a single-mode radiation field (Dicke model), can
be described by interaction Hamiltonians of the form (see, e.g., [1–4])

H =



0 Al 0 · · · 0

Al 0 Al−1 · · · 0

· · · · · · · · · · · · · · ·
0 · · · A−l+2 0 A−l+1

0 · · · 0 A−l+1 0

 . (1.1)

The dimensiond = (2l + 1) of this matrix is by no means small (for instance, in the Dicke
model, 2l is the number of atoms considered). Therefore, finding analytical expressions for the
corresponding eigenvalues and eigenvectors ofH is essential in order to solve the dynamics of
the model. It is also important to point out that, in some cases,H can be seen as a perturbation of
theJx generator of an underlyingsu(2) dynamical symmetry. This fact has been successfully
used in order to describe many features of these models [3], and it will be also relevant in what
follows.

In this paper we show that the suq(2) quantum algebra (see, e.g., [5–13]) can be used to
define a Hamiltonian of the type (1.1) in a natural way. Such a Hamiltonian is introduced
as a simple function of the suq(2) generators having as non-deformed limit theJx generator
of thesu(2) algebra. By considering the well known representation theory of suq(2) (which
is revisited in section 2), the Hamiltonian is defined and its eigenvalues and eigenvectors are
found (section 3). The spectrum obtained is essentially anharmonic; thus we have a new
exactly solvable nonlinear quantum model with suq(2) dynamical symmetry.

In section 4, relevant Clebsch–Gordan coefficients for both the bare and the dressed basis
are considered. Finally, in section 5 we present an application of the previous analytical results
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6262 A Ballesteros and S M Chumakov

to finding the energy of the ground state of the Dicke model by making use of a perturbation
theory around the suq(2) Hamiltonian. This preliminary study shows that theq-deformed
Jx operator here introduced is physically meaningful in the context of the quantum optical
Hamiltonians mentioned above (compare with the results given in [2–4], for example), and the
explicit dynamical features of the suq(2)Dicke model will be fully developed in a forthcoming
paper. In this paper, we shall provide the basic algebraic properties that are needed in order
to solve it explicitly. It is interesting to stress that some of these properties show new (to our
knowledge) features of the suq(2) algebra, all of them related to the deformedJx = (J++J−)/2
generator.

2. Thesuq(2) algebra

Let the operatorsJz , J± generate the quantum algebra suq(2) with the coproduct [5–13]

1(J±) = J± ⊗ q−Jz + qJz ⊗ J± (2.1)

1(Jz) = Jz ⊗ 1 + 1⊗ Jz. (2.2)

The deformed commutation rules consistent with the previous map are given in the form

[Jz, J±] = ± J±, [J+, J−] = [2 Jz] (2.3)

where [x] := (qx − q−x)/(q − q−1) andq = ez/2. We shall assume thatq is not a root of
unity, and we shall recover the ‘classical’ results whenq → 1.

Let us introduce, firstly, the ‘bare’ basis of the eigenvectors ofJz:

2Jz|l, m〉 = 2m|l, m〉. (2.4)

In this basis, the(2 l + 1)-dimensional irreducible representation of suq(2) is given by (2.4)
and

J±|l, m〉 =
√

[l ∓m][ l ±m + 1]|l, m + 1〉. (2.5)

Throughout the paper we will use the following (standard) notation for theq-numbers:

[n] = q−n+1 + q−n+3 + q−n+5 · · · + qn−1 = qn − q−n
q − q−1

, [0] = 0, [−n] = −[n]. (2.6)

We shall also introduce the symbols

[n,m] := q−(n−1)m + q−(n−3)m + q−(n−5)m + · · · + q(n−1)m = [nm]/[m]. (2.7)

Thus, limq→1[n, k] = n, and

[n, 1] = [n], [k, 0] = k, [2, k] = qk + q−k = [2k]/[k]. (2.8)

3. The Hamiltonian

Let us consider the following suq(2) operator as a Hamiltonian:

H = qJz/2 (J+ + J−) qJz/2. (3.1)

We stress that theq → 1 limit of H is just 2Jx , butH is not the standard way to introduce
the deformedJx operator in suq(2). On the other hand, one can easily check that, from the
definition (3.1) and the maps (2.1)-(2.2), the coproduct ofH can be deduced (note that1 is
an algebra homomorphism:1(X Y) = 1(X)1(Y )):

1(H) = H ⊗ 1 +q2Jz ⊗H. (3.2)
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Such a form of the coproduct is known (see, e.g., [13]). In the(2 l + 1)-dimensional
representationDl ,H thus takes the form (1.1) with

Am = qm−1/2
√

[l+m][ l−m+1]. (3.3)

In particular, whenl = 1, we have

D1(H) =

 0 q1/2
√

[2] 0

q1/2
√

[2] 0 q−1/2
√

[2]

0 q−1/2
√

[2] 0

 . (3.4)

A straightforward computation shows that the spectrum of this operator is [2], 0, −[2]. The
corresponding normalized eigenvectors are

|1,±1〉 = 1√
2[2]

 q1/2

±√[2]

q−1/2

 |1, 0〉 = 1

[2]

 q−1/2
√

[2]

0

−q1/2
√

[2]

 . (3.5)

Due to the richness of the structures underlying quantum deformations, this remarkable
anharmonic deformation of theJx Hamiltonian can be explicitly solved for arbitraryl as
follows.

3.1. Spectrum and eigenvectors

It can be proved (by induction and using the coproduct to construct higher-dimensional
representations from the three-dimensional one considered before) that the spectrum of this
operator for a givenl is just [2m], with m = −l, . . . , l.

Moreover, the eigenvector|l, l〉′ corresponding to the highest eigenvalue [2l] is given by
the following components in the bare basis|l, m〉:

αml ≡ 〈l, m|l, l〉′ = qm(l−1/2)

√
[2l]!

[l+m]![ l−m]!
. (3.6)

Here, the prime means that a special normalization is accepted, temporarily, whereαll =
ql(l−1/2) = 1/α−l−l . The next eigenvector|l, l − 1〉′ with the eigenvalue [2l−2] is given by

αm,l−1 = 〈l, m|l, l − 1〉′ = αml q−2m+1
√

[2l]

(
1− ql+m−1 [2]

[l −m]

[2l]

)
. (3.7)

Finally, an arbitrary eigenvector with eigenvalue [2m] can be deduced, namely

αmn = 〈l, m|l, n〉′ = αml q(l−n)(l−n−2m)

√
[2l]!

[l−n]![ l+n]!

×
l−n∑
j=0

(
(−1)j q−j (l−m−2n)+j (j+1)/2 [2(l−n)]!!

[j ]![2 (l−n−j)]!!

× [l−m][ l−m−1] · · · [l−m−j+1]

[2l][2l−1] · · · [2l−j+1]

)
(3.8)

where [2n]!! := [2n] · [2n− 2] · · · [2].
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3.2. Normalization

These eigenvectors can be easily normalized in terms ofq-numbers. For the ground and top
states we have

|l, l〉 = N−1
l,l |l, l〉′ where N 2

l,l = N 2
l,−l = ′〈l, l|l, l〉′ = q−l(l−1/2)

2l∑
k=0

qk(2l−1)[2l]!

[k]![2 l−k]! .

(3.9)

A simple calculation gives

N 2
l,l =

2l−1∏
k=0

(qk + q−k) = 2 [2] (q2 + q−2) · · · (q2l−1+q−2l+1) =
2l−1∏
k=0

[2, k]. (3.10)

The excited states can be normalized as follows:

N 2
l,n = ′〈l, n|l, n〉′ =

1

q2n + q−2n

l+n∏
k=−l+n

(
qk + q−k

) = 1

[2, 2n]

l+n∏
k=−l+n

[2, k]. (3.11)

For instance

N 2
1/2,1/2 = N 2

1/2,−1/2 = 2, N 2
1,1 = N 2

1,−1 = 2 [2], N 2
1,0 = [2]2, . . . . (3.12)

Note that all of the coefficientsN 2
l,n go to 22l in the limit q → 1. Finally, if we denote the

entries of the normalized eigenvectors as

Almn = αlmn/Nln (3.13)

the following relations hold:

Almn(q) = (−1)l−nAl−m,n(1/q) Almn(q) = (−1)l−mAlm,−n(q). (3.14)

They generalize the known symmetry of the non-deformedsu(2) case (q = 1) by involving
the transformationq → q−1.

3.3. Orthogonality relations

For physical applications (like the calculation of mean values) is desirable to further develop
the previous ‘q-arithmetics’. With this goal in mind, let us note that the quantities|αml|2 from
(3.6) play the role of the binomial coefficients. In particular, the moments of this deformed
binomial distribution, i.e. the mean values

〈Yk〉2l ≡
2l∑
k=0

|αk−l,l|2 Yk (3.15)

can be calculated. With this definition, the equation (3.9) is then rewritten in the form

〈1〉2l ≡
2l−1∏
s=0

(qs + q−s ). (3.16)

Moreover, one has the following deformed formulae(0 6 j, M 6 2l) for the binomial
distribution:

〈q−2j k〉2l = q−2j l
2l−j−1∏
s=−j

(qs + q−s) (3.17)

〈[k][k−1] · · · [k−M+1]q−k(2j+M)〉2l = q−2Mj−M(M+1)/2 〈q−2j k〉2l−M (3.18)

= [2l][2l−1] · · · [2l−M+1] q−j (2l+M)−M(M+1)/2
2l−M−1−j∏
s=−j

(qs + q−s). (3.19)

These formulae are equivalent to the fact that the dressed vectors form an orthonormal basis.
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4. Clebsch–Gordan coefficients for the dressed basis

We can decompose the tensor product of the dressed vectors (3.8), (3.13) into the irreducible
parts

|l, m〉 ⊗ |1, i〉 =
j=l+1∑
j=l−1

C
j

l1,mi |j,m + i〉12 (4.1)

whereCjl1,mi are the Clebsch–Gordan (CG) coefficients for the dressed basis. However, the
vector |l, m〉 ⊗ |1, i〉 on the left-hand side and vectors|j,m + i〉12 on the right-hand side
are eigenvectors ofJ x in the corresponding representations only fori = 0. Thus, only the
coefficientsCjl1,m0 are of interest. Forl = 1, they are given as

C2
11,10 =

√
q3 + q−3

[4]
C1

11,10 = −
√

1

q2 + q−2
C0

11,10 = 0 (4.2)

C2
11,00 =

√
[4]

[2][3]
C1

11,00 = 0 C0
11,00 = −

√
1

[3]
(4.3)

C2
11,−10 = C2

11,10 C1
11,−10 = −C1

11,10 C0
11,−10 = 0. (4.4)

They thus differ from the coefficients in the bare basis [9] (though have the same limitq → 1).
By rewriting the definition

C
j

l1;p,0 = 12〈j, p|l, p〉1|1, 0〉2 (4.5)

in terms of components of the dressed vectors, and afterwards replacing explicitly the
components of|1, 0〉2, we get the relation

C
j

l1;p0 =
1√
[2]

j∑
k=−j

Ajkp
(
q−1/2C

j

l1;k−1,1A
l
k−1,p − q1/2C

j

l1;k+1,−1A
l
k+1,p

)
. (4.6)

Here,Almn = 0 if |m| > L and

C
j

l1;m1,m2
= 12〈j,m1 +m2|l, m1〉1|1, m2〉2 (4.7)

are the CG coefficients in the bare basis. Another useful formula for the Clebsch–Gordan
coefficients in the dressed basis can be obtained as follows. Starting with the expansion of the
tensor product

|l, p〉1|1, 0〉2 =
∑
j

C
j

l1;p0|j, p〉12 (4.8)

we can rewrite the dressed vectors in the bare basis,|j, p〉12 =
∑j

m=−j A
j
mp|j,m〉12, and the

vectors|j,m〉12 in terms of the tensor product, using bare CG coefficients:

|j,m〉12 =
1∑

m2=−1

C
j

l1;m−m2,m2
|l, m−m2〉1|1, m2〉2. (4.9)

We have

Alm1p
A1
m20 =

l+1∑
j=l−1

C
j

l1;p0A
j
m1+m2,pC

j

l1;m1m2
. (4.10)
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Multiplying by Ckl1l2;m1,m2
, making a summation under the conditionm1 +m2 = m, using the

orthogonality of the Clebsch–Gordan coefficients∑
m2

Ckl1l2;m−m2,m2
C
j

l1l2;m−m2,m2
= δjk (4.11)

and, finally, replacing the explicit form ofA1
m0, we have the connection between the coefficients

in the bare and dressed basis:

C
j

l1;p0A
j
mp =

1√
[2]

{−Alm+1,p q
1/2C

j

l1;m+1,−1 +Alm−1,p q
−1/2C

j

l1;m−1,1

}
−j 6 m 6 j − l 6 p 6 l. (4.12)

For instance, using these formulae form = j , we can express the‘dressed’ coefficients in terms
of ‘bare’ ones.

Finding the components of the first three rows of the matrixAlmn

Alln =
qn

2−l/2

Nln

√
[2l]!

[l − n]![ l + n]!

All−1,n =
qn

2−(3l−1)/2

Nln

√
[2l]!

[l − n]![ l + n]!

[2n]√
[2l]

(4.13)

All−2,n =
qn

2−l/2+1

Nln

√
[2l]!

[l − n]![ l + n]!

q1−2l [2n]2 − [2l]√
[2l][2l][2l − 1]

and using equation (4.12), we arrive at the explicit expressions

Cl+1
l1;p0 =

√
[l + 1 +p][ l + 1− p][2, l + 1 +p][2, l + 1− p]

[2][2l + 2][2l + 1]

Cll1;p0 = −
[2p]√

[2l + 2][2l]
(4.14)

Cl−1
l1;p0 = −

√
[l + p][ l − p][2, l + p][2, l − p]

[2][2l][2l + 1]
.

5. Application to the Dicke model

In order to demonstrate how our approach works we will apply it to the Dicke model, which
describes the interaction of a system ofN = 2l two-level atoms with the quantum radiation field
in an ideal cavity. (This model is mathematically equivalent to the three-photon Hamiltonian
describing three-wave mixing.) The Hamiltonian can be written in the matrix form (1.1) with
the matrix elements

Bm =
√
(l +m)(l + 1−m)(s + 1−m) (5.1)

wheres > l is a parameter (2s is the excitation number which is conserved in this model [3]).
We restrict ourselves to the case of the highest nonlinearity,s = l. (In the language of
three-wave mixing processes this corresponds to the second harmonic generation.) We are
particularly interested in the limit of largel, which corresponds to high photon numbers.

We will take the Hamiltonian

H0 = �H (5.2)
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with H (3.1) belonging tosuq(2) as a zeroth-order Hamiltonian, and we will find the Dicke
spectrum by using the perturbation theory. In the present paper we restrict ourselves to the
energy of the ground state for the sake of simplicity. The values ofq and� are to be chosen.
The simplest way to fit them is to provide the coincidence of the points where the matrix
elementsBm of the three-wave Hamiltonian and the matrix elements

Am = �qm−1/2
√

[l −m][ l +m + 1] = � 〈l, m + 1|H |l, m〉 (5.3)

of the HamiltonianH0 take their maximum values. It gives (fors = l)

α = N logq = 3

2
log

√
5− 1

2
≈ −0.7218 (5.4)

and the maxima ofB(m) andA(m) occur in the pointm0 = −(l − 1)/3. We chose the
coefficient� to make equal the values ofAm andBm in their maxima. This gives

� = 4(N + 1)3/2√
27[N + 1]

. (5.5)

At the next step, we find the approximation for the three-wave Hamiltonian in the form

Bm ≈ �Am φ(m) φ(m) = 1 +φ11− φ21
2 + φ313 1 = m−m0. (5.6)

We thus restrict the expansion up to the third-order polynomialφ(m). We can find the
coefficientsφj explicitly by comparing the Taylor expansions for the matrix elementsB(m)

andA(m) around the pointm0. We have

B(m) = 2(N + 1)3/2√
27

[
1− 27

8

(
1

N + 1

)2

+
27

8

(
1

N + 1

)3

+ O(N−4)

]
(5.7)

and

A(m) = [N + 1]

2

[
1− 2α2

tanh2 α

(
1

N + 1

)2

− 4α3

tanh2 α

(
1

N + 1

)3

+ O(N−4)

]
(5.8)

which determines the polynomialφ(1):

φ(1) = 1−
(

27

8
− 2α2

tanh2 α

)(
1

N + 1

)2

+

(
27

8
+

4α3

tanh2 α

)(
1

N + 1

)3

+ O(N−4). (5.9)

Now we may substitute1 = m−m0 = Jz + (l − 1)/3 and rewrite (5.6) in matrix form:

HD ≈ �
[
J+φ(Jz −m0) + φ(Jz −m0)J−

] = 2�
{
Jx, f (Jz)

}
. (5.10)

HereJ±,z are generators ofsuq(2) and{A,B} = AB + BA. The new functionf (Jz) is also
a polynomial of degree three, whose coefficients can be easily found. Now the ground-state
energy is approximately given as

〈−l, l|HD|−l, l〉 ≈ −�[2l]
3∑
k=0

fk〈−l, l|(Jz)k|−l, l〉. (5.11)

Therefore, we have reduced the problem to the calculation of the averages of the powers of the
operatorsJz (the moments) in the eigenstates of the operatorH .

Though this problem can be solved for arbitrary eigenstates, here we consider the ground
states only. By using the results of the previous sections we can write the generating function
for these moments. For arbitraryp = expµ andq = expt we find

〈−l, l|p2Jz |−l, l〉 =
N−1∏
k=0

cosh(µ + kt)

cosh(kt)
. (5.12)
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Now, let us introduce the notation

Sk =
N−1∑
j=1

tanhk j t ≈
∫ N−1

1
dx tanhk xt +

1

2

[
tanhk t + tanhk(N − 1)t

]
(5.13)

where we have used the Euler–Maclaurin summation formula. Differentiating (5.12) with
respect toµ, we find

〈−l, l|2Jz|−l, l〉 = S1 (5.14)

〈−l, l|(2Jz)2|−l, l〉 = S2
1 − S2 +N , (5.15)

〈−l, l|(2Jz)3|−l, l〉 = S3
1 − 3S2S1 + (3N − 2)S1 + 2S3. (5.16)

On the other hand, from (5.13) we have the following expressions for the first three sums:

S1 ≈ N

α
log cosh(α − t) +

tanh(α − t)
2

t = α

N
= logq (5.17)

S2 ≈ N − 1−N tanh(α − t)
α

+
tanh2(α − t)

2
(5.18)

S3 ≈ N

α
log cosh(α − t)−N tanh2(α − t)

2α
+

tanh3(α − t)
2

. (5.19)

The combination of all these formulae gives the approximation for the energy of the
ground state. Comparing with the numerical results, we can say that the accuracy for the
energy of the ground state is 1.5% for 100 atoms (N = 100) and 0.35% for 400 atoms. Note
that it is the Maclaurin summation formula (5.13) that reduces the accuracy, which would
otherwise be much higher. However, it gives the correct asymptotic behaviour whenN →∞,
which is sufficient for our goals. We may also mention that our method produces much better
accuracy than the analogous perturbation theory with commonsu(2) as a dynamical symmetry
algebra [3, 14] orthe variational method with thesu(2) coherent states as probe states [15].
The complete description of the spectrum and the dynamical analysis of the Dicke model by
means of the present approach will be given elsewhere.
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